If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15q=-q^2+10000
We move all terms to the left:
15q-(-q^2+10000)=0
We get rid of parentheses
q^2+15q-10000=0
a = 1; b = 15; c = -10000;
Δ = b2-4ac
Δ = 152-4·1·(-10000)
Δ = 40225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40225}=\sqrt{25*1609}=\sqrt{25}*\sqrt{1609}=5\sqrt{1609}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{1609}}{2*1}=\frac{-15-5\sqrt{1609}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{1609}}{2*1}=\frac{-15+5\sqrt{1609}}{2} $
| 4x^2-3x-37=0 | | 3-3(3x+1)=-27 | | 6w–5=49 | | 2y/3=y-2 | | 4x^2-4x-37=0 | | 3x+2(x-2)=5x- | | (y−4)(y−5)=0 | | 0=x^2+6x+285 | | 10×5+4y=90 | | -6(u-8)=-2u+16 | | 2x-14=3x-5 | | 85=5(y–81) | | (6)(1/4x)(0.5)=9 | | -11+5n=4 | | 100(x+5)=450-50x | | 85=5(h+10) | | 3x+32=-7(x-6) | | 13=5+4r | | -3(u-6)=-6u+24 | | (2x-5-8)=0 | | 45y/4=90 | | 170=5(2x+4) | | 3x-x+2=-4 | | 4(6-y)+2=10 | | 2(3x+4)=x+27 | | -0.6r=1.6 | | 7=4s–9 | | 3w+-18=8w+7 | | 7=4k–9 | | 8v+12=3v+32 | | 13=s/3+10 | | 4/3(x=3)=2 |